becauseR is also a constant vector with respect to the coor-vector that can be freely changed without affecting eiter
dinate systenk, fixed on the body. Combining7) and(8)  or w,. As an immediate consequenea,=w;, and the

we obtain proof is complete.
wlxRZwlxrl—wZsz (9)
or, inasmuch aR=r;—r,, 3E|ectronic mail: nivaldo@if.uff.br
'H. Goldstein, Classical Mechanics(Addison—Wesley, Reading, MA,
(wy— w1) Xr,=0. (10) 1980, 2nd ed., pp. 189-190.

] ) ) o ) ) 2G. R. Gruber, “Clarification of two important questions in rigid body
Since P is any point of the rigid bodyr, is an arbitrary mechanics,” Am. J. Physt0, 421-423(1972.

Fourier transform solution to the semi-infinite resistance ladder

R. M. Dimeo
National Institute of Standards and Technology, 100 Bureau Drive-Stop 8562, Gaithersburg,
Maryland 20899-8562

(Received 16 August 1999; accepted 20 September)1999

In a recent articlea general method for solving for the both directions, whereas the ladder of primary interest is
resistance between any two nodes of a number of infinitsemi-infinite (infinite in only one direction We can easily
resistance lattices using discrete-variable Fourier transformselate the currents and voltages of the infinite ladder to those
was presented. In this note the same technique is applied tf the semi-infinite ladder. If we know that a node voltage,
the semi-infiniteladder network. The mathematical methodsy,,, results from the inputfal A of current at the same node,
used in the solution to this proble(fourier transforms and then the resistanc®, can be found, as shown in Fig(t.

contour integrationare well within the abilities of the un- Simple application of the current rule to Fig(b2 yields
dergraduate physics major. This one-dimensional example is

thus complementary to the twand highe)-dimensional net- vo  2vg 200R
works presented in the previous arti¢lend this example 1= E+ R - E— (1)
can be used in a junior-level mathematical methods course. eq Vo

The input resistance of the semi-infinite ladder networkwe can determine the node voltage at any nogléased on
composed of identical resistors, shown in Fig. 1, is wellthe current entering that node in the infinite ladder of Fig.
known and can be solved by using simple rules of parallel
and series combinations of resistofsee the paper by
Srinivasari and references therginOne simply notes that
adding on another resistive repeat unit to the semi-infinite io iy (- in ot
ladder will not affect the overall input resistance so that R R R R R
Req= Req- The equivalent resistance is thus found to be equal ---—WW! WW WW WW WW
to the golden ratio multiplied by the unit of resistanég,
=[(1+5)/2]R.

This result can be found using the Fourier transform solu- - - -
tion to the difference equation governing the auxiliary resis- (@
tance ladder shown in Fig(&. This auxiliary ladder, which
we introduce for mathematical convenience, is infinite in 1A
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Fig. 2. Reduction ofa) the infinite resistor ladder t) a circuit in terms of
Rea Req the equivalent resistance between nodes a and b of the semi-infinite ladder
shown in Fig. 1. Note that all of the external currents being fed into the
Fig. 1. The semi-infinite resistor ladder. The resistance between nodes a ameétwork in(a) are set to zero excepy=1 A for the specific case of making
b is defined as the input resistance for this network. the equivalence to the circuit shown in Fig. 1.
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2(a). Kirchhoff's current law applied to node results in the R (2n elnB
following difference equation, Un=5— fo Bm. (6)
Rin=3vn=Un+1=Un-1, 2 . )
The voltage at node Qiy, can be evaluated readily using
wherei, is current fed into nod@& supplied by an external contour integration. The integral which we wish to solve is
source.

Following the method presented in Atkinson’s papere R (2= dg
use the discrete-variable Fourier transform paiso called a O_—J — 7
complex Fourier serigs 2m Jo 3—2cosB
1 (2= , - : with the corresponding contour integral
Xmpe | ABXBEM X (B~ S xe ™, @ Ponens ’
277 0 n=—o
R dz 1
and transform the difference equation franto 8. The re- iy ﬁﬂ:l? 3—(z+z &)° ®
sulting transformed voltage is
RI(B) The integrand has only one pole located in the unit circle,
v(B)= 3-2cosB’ (4 z=(3—5)/2. Therefore, the integral evaluates tg,

=R/\/5, which is the effective resistance of the infinite lad-

with the actual voltage at nodeexpressed as the integral der. Finally, we obtain the effective resistance of the semi-
infinite ladder by substitution of, into Eq. (1) and obtain

R (27 1(B) Req=[(1+5)/2]R.

N M7 AinB
27 Jo 3—2003,/:3e ' ®

Un=

A current d 1 A fed into node 0 as shown in Fig. 2, repre- ID. Atkinson and F. J. van Steenwik, “Infinite resistive lattices,” Am. J.
sented as,= &, (Where s, =1 if n=k and 0 otherwisg ~ ,PNys.67, 486-492(1999. o _

Its i tr hsformed chrrent bfB)=1. Therefore, the A. V. Oppenheim and R. W. Schafebiscrete-Time Signal Processing
results in a tra B (Prentice—Hall, Englewood Cliffs, NJ, 1989
voltage at any noden, under these circumstances is written 1. p. srinivasan, “Fibonacci sequence, golden ratio, and a network of

as resistors,” Am. J. Phys60, 461-462(1992.

Comment on “Ideal capacitor circuits and energy conservation,”
by K. Mita and M. Boufaida [Am. J. Phys. 67 (8), 737—739 (1999)]

A. Gangopadhyaya and J. V. Mallow
Department of Physics, Loyola University Chicago, Chicago, lllinois 60626

(Received 19 August 1999; accepted 27 October 1999

K. Mita and M. Boufaida(hereinafter MB! discuss the is a monotonically increasing, continuous, differentiable
puzzle of the missing energy in a capacitor charged from dunction of time, will deliver the “correct” energy. With
power supply(a battery or another capacitpmwith neither 0<t<tg, f(0)=0, f(ty)=1, andq=CV,
resistance nor inductance in the circuit. In such a circuit, the
power supply appears to deliver eneifyys=qV,, while the
capacitor only storeéCV(Z):_%qVO. The problem disappears Epe —V dt= CVZJ F(t —dt—CVZJ fdf
if either inductance. or resistanceR is introduced into the
circuit, whereL andR can be as small as one likes, but not L
zero(a rather peculiar discontinuityMB note that the func- =2CVo @
tion of L and/orRis to change a discontinuous, instantaneous
charging process into a continuous one, with a finite timeViB note that the charge across the instantaneously charging
constant. They then generalize their observation, and shogapacitor can be written ag=CV,0(t), where®(t) is the
that any power supply described M=V, f(t), wheref(t) Heaviside step-function:
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